Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Behavior Cloning and Replay of Humanoid Robot via a Depth Camera

Authors: Quantao Wang; Ziming He; Jialiang Zou; Haobin Shi; Kao-Shing Hwang;

Behavior Cloning and Replay of Humanoid Robot via a Depth Camera

Abstract

The technique of behavior cloning is to equip a robot with the capability of learning control skills through observation, which can naturally perform human–robot interaction. Despite many related studies in the context of humanoid robot behavior cloning, the problems of the unnecessary recording of similar actions and more efficient storage forms than recording actions by joint angles or motor counts are still worth discussing. To reduce the storage burden on robots, we implemented an end-to-end humanoid robot behavior cloning system, which consists of three modules, namely action emulation, action memorization, and action replay. With the help of traditional machine learning methods, the system can avoid recording similar actions while storing actions in a more efficient form. A jitter problem in the action replay is also handled. In our system, an action is defined as a sequence of many pose frames. We propose a revised key-pose detection algorithm to keep minimal poses of each action to minimize storage consumption. Subsequently, a clustering algorithm for key poses is implemented to save each action in the form of identifiers series. Finally, a similarity equation is proposed to avoid the unnecessary storage of similar actions, in which the similarity evaluation of actions is defined as an LCS problem. Experiments on different actions have shown that our system greatly reduces the storage burden of the robot while ensuring that the errors are within acceptable limits. The average error of the revised key-pose detection algorithm is reduced by 69% compared to the original and 26% compared to another advanced algorithm. The storage consumption of actions is reduced by 97% eventually. Experimental results demonstrate that the system can efficiently memorize actions to complete behavioral cloning.

Related Organizations
Keywords

humanoid robot, action representation, key-pose, QA1-939, action emulation, action combination, behavior cloning, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold