
The edge computing paradigm is featured by the ability to off-load computing tasks from mobile devices to edge clouds and provide high cost-efficient computing resources, storage and network services closer to the edge. A key question for workflow scheduling in the edge computing environment is how to guarantee user-perceived quality of services when the supporting edge services and resources are with unstable, time-variant, and fluctuant performance. In this work, we study the workflow scheduling problem in the multi-user edge computing environment and propose a Deep-Q-Network (DQN) -based multi-workflow scheduling approach which is capable of handling time-varying performance of edge services. To validate our proposed approach, we conduct a simulative case study and compare ours with other existing methods. Results clearly demonstrate that our proposed method beats its peers in terms of convergence speed and workflow completion time.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
