
Colloidal photonic crystals have attracted much attention of the scientific world due to their unique optical properties and potential applications in sensing, displays, optoelectronics, controlled superwetting and other fields. Here we report the fabrication of spherical colloidal photonic crystals featured with well-ordered nanopatterns from silica nanoparticles (SiO2NPs) and gold nanoparticles (AuNPs) through a droplet-based microfluidic approach. The colloidal crystals show both the photonic band gaps (PBG) and surface plasmonic resonance (SPR) properties. These proposed hierarchically composite ‘superballs’ will have an excellent performance in sensing applications, due to the fast response (the scattering color change) to the dielectric properties of the surrounding medium. A robust and efficient strategy is proposed and demonstrated to fabricate the composite superballs with multifunctional properties, broadening the perspective of their applications by the advantages of precise control over the size of the particles and flexible change of the fluid composition.
A, composite superball, surface plasmonic resonance, photonic crystal, General Works, photonic band gaps
A, composite superball, surface plasmonic resonance, photonic crystal, General Works, photonic band gaps
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
