Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

OCEAN: Open-World Contrastive Authorship Identification

Authors: Mächtle, Felix; Serr, Jan-Niclas; Loose, Nils; Sander, Jonas; Eisenbarth, Thomas;

OCEAN: Open-World Contrastive Authorship Identification

Abstract

In an era where cyberattacks increasingly target the software supply chain, the ability to accurately attribute code authorship in binary files is critical to improving cybersecurity measures. We propose OCEAN, a contrastive learning-based system for function-level authorship attribution. OCEAN is the first framework to explore code authorship attribution on compiled binaries in an open-world and extreme scenario, where two code samples from unknown authors are compared to determine if they are developed by the same author. To evaluate OCEAN, we introduce new realistic datasets: CONAN, to improve the performance of authorship attribution systems in real-world use cases, and SNOOPY, to increase the robustness of the evaluation of such systems. We use CONAN to train our model and evaluate on SNOOPY, a fully unseen dataset, resulting in an AUROC score of 0.86 even when using high compiler optimizations. We further show that CONAN improves performance by 7% compared to the previously used Google Code Jam dataset. Additionally, OCEAN outperforms previous methods in their settings, achieving a 10% improvement over state-of-the-art SCS-Gan in scenarios analyzing source code. Furthermore, OCEAN can detect code injections from an unknown author in a software update, underscoring its value for securing software supply chains.

To be published in Accepted at Applied Cryptography and Network Security (ACNS) 2025

Keywords

FOS: Computer and information sciences, Computer Science - Cryptography and Security, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green