
arXiv: 2412.05049
In an era where cyberattacks increasingly target the software supply chain, the ability to accurately attribute code authorship in binary files is critical to improving cybersecurity measures. We propose OCEAN, a contrastive learning-based system for function-level authorship attribution. OCEAN is the first framework to explore code authorship attribution on compiled binaries in an open-world and extreme scenario, where two code samples from unknown authors are compared to determine if they are developed by the same author. To evaluate OCEAN, we introduce new realistic datasets: CONAN, to improve the performance of authorship attribution systems in real-world use cases, and SNOOPY, to increase the robustness of the evaluation of such systems. We use CONAN to train our model and evaluate on SNOOPY, a fully unseen dataset, resulting in an AUROC score of 0.86 even when using high compiler optimizations. We further show that CONAN improves performance by 7% compared to the previously used Google Code Jam dataset. Additionally, OCEAN outperforms previous methods in their settings, achieving a 10% improvement over state-of-the-art SCS-Gan in scenarios analyzing source code. Furthermore, OCEAN can detect code injections from an unknown author in a software update, underscoring its value for securing software supply chains.
To be published in Accepted at Applied Cryptography and Network Security (ACNS) 2025
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Cryptography and Security (cs.CR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
