
We report the experimental results of hybrid four-wave mixing and fluorescence signals from nitrogen-vacancy (NV) centers in diamond. The fluorescence signals are slowed owing to dark state. The observed delay time of light slowing due to interconversion between NV− and NV0 is about 6.4 μs. The relative intensities of read-out signals change with the wavelength and power of writing pulse. Based on light slowing, we present the model of all-optical time division multiplexing. The intensity ratio in different demultiplexed channels is modulated by the wavelength and power of control field. It has potential applications in quantum communication and all-optical network.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
