
We report our recent results in the development of theoretically supported scalable algorithms for the solution of large scale complex contact problems of elasticity The algorithms combine the TFETI based domain decomposition method adapted to the solution of 2D and 3D frictionless multibody contact problems of elasticity with our in a sense optimal algorithms for the solution of the resulting quadratic programming problems Rather surprisingly, the theoretical results are qualitatively the same as the classical results on scalability of FETI for the linear elliptic problems The efficiency of the method is demonstrated by the results of numerical experiments with parallel solution of both coercive and semicoercive 2D and 3D contact problems.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
