
Flavor transitions via the charged current interactions are parametrized by a three dimensional and unitary transformation. This so called mixing matrix requires of four mixing parameters. Here we show that under the phenomenological observation of hierarchical fermion masses, $m_3 \gg m_2 \gg m_1$, a mixing parametrization can be built with its mixing parameters being the corresponding four independent mass ratios of each fermion sector, i.e., $m_u/m_c$, $m_c/m_t$, $m_d/m_s$, and $m_s/m_b$ and $m_e/m_��$, $m_��/m_��$, $m_{��1}/m_{��2}$, and $m_{�� 2}/m_{��3}$, for the quark and lepton sector, respectively.
8 pages; to be published in Journal of Physics Conference Series (IOP). Joint Proceedings of the XV Mexican Workshop on Particles and Fields & the XXX Annual Meeting of the Division of Particles and Fields of the Mexican Physical Society
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
