
AbstractNMR measurements of cross-correlated nuclear spin relaxation provide powerful probes of polypeptide dynamics and rotational diffusion, free from contributions due to chemical exchange or interactions with external spins. Here, we report on the development of a sensitivity-optimized pulse sequence for the measurement of cross-correlated relaxation in methyl spin systems by analysis of the differential relaxation of transitions within the13C multiplet. We describe the application of optimal design theory to implement a real-time ‘on-the-fly’ adaptive sampling scheme that maximizes the accuracy of the measured rate constants. The increase in sensitivity obtained using this approach enables, for the first time, quantitative measurements of rotational diffusion within folded states of translationally-arrested ribosome–nascent chain complexes of the FLN5 filamin domain, and can be used to place strong limits on interactions between the domain and the ribosome surface.
Co-translational folding, Protein Conformation, Cramér-Rao lower bound, Sequential design, Ribosome, Nuclear Magnetic Resonance, Biomolecular, Ribosomes, Parametric estimation
Co-translational folding, Protein Conformation, Cramér-Rao lower bound, Sequential design, Ribosome, Nuclear Magnetic Resonance, Biomolecular, Ribosomes, Parametric estimation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
