Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Grb10 Inhibits Insulin-stimulated Insulin Receptor Substrate (IRS)-Phosphatidylinositol 3-Kinase/Akt Signaling Pathway by Disrupting the Association of IRS-1/IRS-2 with the Insulin Receptor

Authors: KeriLyn R, Wick; Eric D, Werner; Paul, Langlais; Fresnida J, Ramos; Lily Q, Dong; Steven E, Shoelson; Feng, Liu;

Grb10 Inhibits Insulin-stimulated Insulin Receptor Substrate (IRS)-Phosphatidylinositol 3-Kinase/Akt Signaling Pathway by Disrupting the Association of IRS-1/IRS-2 with the Insulin Receptor

Abstract

Grb10 has been proposed to inhibit or activate insulin signaling, depending on cellular context. We have investigated the mechanism by which full-length hGrb10gamma inhibits signaling through the insulin receptor substrate (IRS) proteins. Overexpression of hGrb10gamma in CHO/IR cells and in differentiated adipocytes significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2. Inhibition occurred rapidly and was sustained for 60 min during insulin stimulation. In agreement with inhibited signaling through the IRS/PI 3-kinase pathway, we found hGrb10gamma to both delay and reduce phosphorylation of Akt at Thr(308) and Ser(473) in response to insulin stimulation. Decreased phosphorylation of IRS-1/2 may arise from impaired catalytic activity of the receptor, since hGrb10gamma directly associates with the IR kinase regulatory loop. However, yeast tri-hybrid studies indicated that full-length Grb10 blocks association between IRS proteins and IR, and that this requires the SH2 domain of Grb10. In cells, hGrb10gamma inhibited insulin-stimulated IRS-1 tyrosine phosphorylation in a dose-dependent manner, but did not affect IR catalytic activity toward Tyr(972) in the juxtamembrane region and Tyr(1158/1162/1163) in the regulatory domain. We conclude that binding of hGrb10gamma to IR decreases signaling through the IRS/PI 3-kinase/AKT pathway by physically blocking IRS access to IR.

Keywords

Base Sequence, GRB10 Adaptor Protein, Intracellular Signaling Peptides and Proteins, Proteins, CHO Cells, Protein Serine-Threonine Kinases, Phosphoproteins, Receptor, Insulin, Mice, Phosphatidylinositol 3-Kinases, Cricetinae, Proto-Oncogene Proteins, Insulin Receptor Substrate Proteins, Animals, Humans, Insulin, Proto-Oncogene Proteins c-akt, DNA Primers, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    108
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
108
Top 10%
Top 10%
Top 10%
gold