
arXiv: 1809.00273
This paper focuses on studying the message complexity of implicit leader election in synchronous distributed networks of diameter two. Kutten et al.\ [JACM 2015] showed a fundamental lower bound of $��(m)$ ($m$ is the number of edges in the network) on the message complexity of (implicit) leader election that applied also to Monte Carlo randomized algorithms with constant success probability; this lower bound applies for graphs that have diameter at least three. On the other hand, for complete graphs (i.e., graphs with diameter one), Kutten et al.\ [TCS 2015] established a tight bound of $\tilde��(\sqrt{n})$ on the message complexity of randomized leader election ($n$ is the number of nodes in the network). For graphs of diameter two, the complexity was not known. In this paper, we settle this complexity by showing a tight bound of $\tilde��(n)$ on the message complexity of leader election in diameter-two networks. Together with the two previous results of Kutten et al., our results fully characterize the message complexity of leader election vis-��-vis the graph diameter.
A preliminary version of this work appeared in ICDCN 2018
FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)
FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
