
A solution of the one-dimensional time-independent Vlasov–Poisson system, including the condition of no net current, is constructed for a large class of electric potential functions φ(x), including periodic and solitary waves, as well as monotonic transitions. Displaced Maxwell distributions for the free particles, and an unshifted Maxwell distribution for the trapped ions, are used. The condition of positiveness of the unknown distribution function for the trapped electrons (which can be split into two parts, one depending solely on the chosen wave, the other on the given distributions) is examined. It is shown, for a non-linear wavethat this condition plays no rôle when the thickness l of the wave considerably exceeds the Debye length λD(l ≫ λD). If, however, l lies in the neighbourhood of λD(l ≳ λD), there exist limits for the free parameters. The smallest thickness lmin results if the Mach number M lies in the range 1 > M > 2 and the electronion—temperature ratio θ = Te/Ti exceeds 10. This confirms the view that the wave is a steepened ion-acoustic wave. lmin decreases with decreasing amplitude ϕmax of the wave and decreasing number of trapped ions, but does not lie below the Debye length as long as the wave is non-linear. In the linear case, the condition of positiveness imposes no restrictions.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
