Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2010 . Peer-reviewed
Data sources: Crossref
Science
Article . 2010
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structural Insights into the Assembly and Function of the SAGA Deubiquitinating Module

Authors: Christopher E. Berndsen; Ajit B. Datta; Tingting Yao; Xiangbin Zhang; Cynthia Wolberger; Robert E. Cohen; Nadine L. Samara;

Structural Insights into the Assembly and Function of the SAGA Deubiquitinating Module

Abstract

Complex SAGA The SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex, which is conserved in eukaryotes, plays a key role in regulating gene expression. It is comprised of 21 proteins, and its functions include histone acetylation and deubiquitination. Samara et al. (p. 1025 , published online 15 April) now report the structure of the SAGA deubiquitinating module (DUBm), a four-protein subcomplex, both on its own and bound to ubiquitin aldehyde. The domains are interconnected and stabilized by eight zinc atoms. The organization gives insight into why DUBm complex formation is required to activate the catalytic domain of the enzyme and suggests how DUBm might bind to monoubiquitinated histones.

Keywords

Models, Molecular, Aldehydes, Saccharomyces cerevisiae Proteins, Protein Conformation, Ubiquitin, Ubiquitination, Nuclear Proteins, RNA-Binding Proteins, Crystallography, X-Ray, Models, Biological, Ubiquitinated Proteins, Nucleosomes, Protein Structure, Tertiary, Histones, Endopeptidases, Trans-Activators, Ubiquitins, Histone Acetyltransferases, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    195
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
195
Top 1%
Top 10%
Top 1%
bronze