Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Host & Microbearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Host & Microbe
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Host & Microbe
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Host & Microbe
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Listeria monocytogenes Triggers AIM2-Mediated Pyroptosis upon Infrequent Bacteriolysis in the Macrophage Cytosol

Authors: John-Demian Sauer; Peter Lauer; Daniel A. Portnoy; Bill Hanson; Chelsea E. Witte; Jason Zemansky;

Listeria monocytogenes Triggers AIM2-Mediated Pyroptosis upon Infrequent Bacteriolysis in the Macrophage Cytosol

Abstract

A host defense strategy against pathogens is the induction of cell death, thereby eliminating the pathogen's intracellular niche. Pyroptosis, one such form of cell death, is dependent on inflammasome activation. In a genetic screen to identify Listeria monocytogenes mutants that induced altered levels of host cell death, we identified a mutation in lmo2473 that caused hyperstimulation of IL-1beta secretion and pyroptosis following bacteriolysis in the macrophage cytosol. In addition, strains engineered to lyse in the cytosol by expression of both bacteriophage holin and lysin or induced to lyse by treatment with ampicillin stimulated pyroptosis. Pyroptosis was independent of the Nlrp3 and Nlrc4 inflammasome receptors but dependent on the inflammasome adaptor ASC and the cytosolic DNA sensor AIM2. Importantly, wild-type L. monocytogenes were also found to lyse, albeit at low levels, and trigger AIM2-dependent pyroptosis. These data suggested that pyroptosis is triggered by bacterial DNA released during cytosolic lysis.

Keywords

Cancer Research, MICROBIO, Cell Death, Macrophages, Nuclear Proteins, Listeria monocytogenes, Anti-Bacterial Agents, DNA-Binding Proteins, Mice, Viral Proteins, Bacteriolysis, Cytosol, Mucoproteins, Immunology and Microbiology(all), Animals, Ampicillin, Bacteriophages, MOLIMMUNO, Molecular Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    286
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
286
Top 1%
Top 1%
Top 1%
hybrid
Related to Research communities
Cancer Research