Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTEOMICSarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PROTEOMICS
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PROTEOMICS
Article . 2008
versions View all 2 versions
addClaim

Induction of growth arrest and polycomb gene expression by reversine allows C2C12 cells to be reprogrammed to various differentiated cell types

Authors: Shan, Sze Wan; Tang, Mei Kuen; Chow, Pak Ham; Maroto, Miguel; Cai, Dong Qing; Lee, Kenneth K. H.;

Induction of growth arrest and polycomb gene expression by reversine allows C2C12 cells to be reprogrammed to various differentiated cell types

Abstract

AbstractReversine is a small, cell permeable synthetic chemical that has the ability to reprogram C2C12 myogenic cells to become various differentiated cell types. However, we still do not know how reversine works or the genes and proteins involved. Hence, we have used comparative proteomic techniques to address this issue. We have identified several proteins that were associated with cell cycle progression which were downregulated by reversine. Simultaneously, there were proteins associated with the induction of growth arrest that were upregulated. Consequently, we investigated the effects of reversine on C2C12 cell growth and established that it inhibited cell growth. Reversine had little affects on cell survival. We also investigated whether expressions of the polycomb genes, polycomb repressive complex 1 (PHC1) and Ezh2, were affected by reversine. Polycomb group genes are normally involved in chromatin based gene silencing. We found that PHC1 and Ezh2 expressions were enhanced by reversine and that it correlated with the inhibition of muscle specific transcriptional factor genes, myogenin, MyoD, and Myf5. Therefore, we believe that reversine is able to reprogram C2C12 cells to various differentiated cell types by inducing cell growth arrest, and promoting PHC1 and Ezh2 expressions.

Country
United Kingdom
Related Organizations
Keywords

Identification, 570, Cell Survival, Blotting, Western, Apoptosis, Cell Cycle Proteins, Cyclin A, Cycle, GPI-Linked Proteins, Collagen Type I, Cell Line, Mice, In vitro, Skeletal muscle differntiation, Adipocytes, Animals, Enhancer of Zeste Homolog 2 Protein, C2C12 cells, Cell Proliferation, Transdifferentiation, P53, Cyclin-Dependent Kinase 2, Membrane Proteins, Histone-Lysine N-Methyltransferase, Gene Expression Regulation, Withdrawal, Growth arrest, Multipotent stem cells, Cell Transdifferentiation, Intercellular Signaling Peptides and Proteins, Calreticulin, Carrier Proteins, Reversine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!