Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 1995 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 1995
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of genes required for alpha 2 repression in Saccharomyces cerevisiae.

Authors: M Wahi; Alexander D. Johnson;

Identification of genes required for alpha 2 repression in Saccharomyces cerevisiae.

Abstract

Abstract Transcriptional repression of the a-specific genes in Saccharomyces cerevisiae alpha cells involves the concerted action of several proteins. The homeodomian protein alpha 2, together with MCM1, recruits two general transcriptional repressors, SSN6 and TUP1, to the promoters of a-specific genes. SSN6 and TUP1 then mediate repression of the a-specific genes. SIN4, another general negative regulator, is required for this repression, but unlike tup1 or ssn6 deletions, sin4 deletions cause only partial loss of repression. We have screened for other genes required for a-specific gene repression in alpha cells. In addition to recovering multiple alleles of previously identified genes required for this process (referred to as alpha 2 repression), we have identified four other genes, designated ARE1, ARE2, ARE3, and ARE4 (for alpha 2 repression). Recessive mutations in the ARE genes cause partial loss of a-specific gene repression and cause pleiotropic phenotypes similar to those resulting from mutations in SSN6, TUP1, or SIN4, suggesting that the ARE genes are general negative regulators. Based on our initial analysis, we propose that two distinct classes of general negative regulators cooperate to bring about full levels of alpha 2 repression. The sequence of ARE1 revealed that it encodes a CDC28-related protein kinase, identical to UME5, and thus suggests that protein phosphorylation plays a role in alpha 2 repression.

Keywords

Homeodomain Proteins, Mediator Complex, Saccharomyces cerevisiae Proteins, Models, Genetic, Genetic Linkage, Genes, Fungal, Genetic Complementation Test, Nuclear Proteins, Saccharomyces cerevisiae, Minichromosome Maintenance 1 Protein, Polymerase Chain Reaction, DNA-Binding Proteins, Fungal Proteins, Repressor Proteins, Mutagenesis, Insertional, Genes, Reporter, Gene Expression Regulation, Fungal, Trans-Activators, RNA Polymerase II, Protein Kinases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 10%
Top 10%
Top 1%
hybrid