Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in Rheumato...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Rheumatology
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Rheumatology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Rheumatology
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cardiovascular risk assessment using ASCVD risk score in fibromyalgia: a single-centre, retrospective study using “traditional” case control methodology and “novel” machine learning

Authors: Sandeep Surendran; C. B. Mithun; Merlin Moni; Arun Tiwari; Manu Pradeep;

Cardiovascular risk assessment using ASCVD risk score in fibromyalgia: a single-centre, retrospective study using “traditional” case control methodology and “novel” machine learning

Abstract

Abstract Background In autoimmune inflammatory rheumatological diseases, routine cardiovascular risk assessment is becoming more important. As an increased cardiovascular disease (CVD) risk is recognized in patients with fibromyalgia (FM), a combination of traditional CVD risk assessment tool with Machine Learning (ML) predictive model could help to identify non-traditional CVD risk factors. Methods This study was a retrospective case–control study conducted at a quaternary care center in India. Female patients diagnosed with FM as per 2016 modified American College of Rheumatology 2010/2011 diagnostic criteria were enrolled; healthy age and gender-matched controls were obtained from Non-communicable disease Initiatives and Research at AMrita (NIRAM) study database. Firstly, FM cases and healthy controls were age-stratified into three categories of 18–39 years, 40–59 years, and ≥ 60 years. A 10 year and lifetime CVD risk was calculated in both cases and controls using the ASCVD calculator. Pearson chi-square test and Fisher's exact were used to compare the ASCVD risk scores of FM patients and controls across the age categories. Secondly, ML predictive models of CVD risk in FM patients were developed. A random forest algorithm was used to develop the predictive models with ASCVD 10 years and lifetime risk as target measures. Model predictive accuracy of the ML models was assessed by accuracy, f1-score, and Area Under 'receiver operating Curve' (AUC). From the final predictive models, we assessed risk factors that had the highest weightage for CVD risk in FM. Results A total of 139 FM cases and 1820 controls were enrolled in the study. FM patients in the age group 40–59 years had increased lifetime CVD risk compared to the control group (OR = 1.56, p = 0.043). However, CVD risk was not associated with FM disease severity and disease duration as per the conventional statistical analysis. ML model for 10-year ASCVD risk had an accuracy of 95% with an f1-score of 0.67 and AUC of 0.825. ML model for the lifetime ASCVD risk had an accuracy of 72% with an f1-score of 0.79 and AUC of 0.713. In addition to the traditional risk factors for CVD, FM disease severity parameters were important contributors in the ML predictive models. Conclusion FM patients of the 40–59 years age group had increased lifetime CVD risk in our study. Although FM disease severity was not associated with high CVD risk as per the conventional statistical analysis of the data, it was among the highest contributor to ML predictive model for CVD risk in FM patients. This also highlights that ML can potentially help to bridge the gap of non-linear risk factor identification.

Keywords

Adult, Fibromyalgia, Adolescent, Diseases of the musculoskeletal system, Risk Assessment, Machine Learning, Young Adult, Risk Factors, Machine learning, Humans, Heart disease risk factors, Retrospective Studies, RC581-607, Middle Aged, United States, Cardiovascular diseases, RC925-935, Cardiovascular Diseases, Heart Disease Risk Factors, Case-Control Studies, Female, Immunologic diseases. Allergy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Green
gold