Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Epidermal growth factor receptor (EGFR) contributes to fetal lung fibroblast injury induced by mechanical stretch

Authors: Victoria M, Giordani; Christina M, DeBenedictus; Yulian, Wang; Juan, Sanchez-Esteban;

Epidermal growth factor receptor (EGFR) contributes to fetal lung fibroblast injury induced by mechanical stretch

Abstract

Epidermal growth factor receptor (EGFR) is critical for normal fetal lung development. However, the role of this receptor in lung injury induced by mechanical ventilation is controversial.To investigate in vitro whether EGFR plays a protective role or contributes to stretch-induced lung injury.Fetal lung fibroblasts were isolated from wild-type and EGFR knockout mice and exposed to physiologic stretch (2.5% elongation) or injurious stretch (20% distention). Cells were evaluated for necrosis, apoptosis, proliferation and inflammation.Injurious stretch increased lactate dehydrogenase (LDH) release to similar degree in wild-type and knockout cells. In contrast, 20% stretch increased cleaved caspase-3 and decreased proliferating cell nuclear antigen (PCNA) only in wild-type cells. Furthermore, 20% stretch increased macrophage inflammatory protein-2 (MIP-2) and monocyte chemotactic protein-1 (MCP-1) by 3-5 fold in wild-type cells. In contrast, in knockout cells MIP-2 decreased by 50% and MCP-1 only increased by 60% when compared to physiologic stretch.Our data show a decrease of apoptosis and inflammation and absence of decreased proliferation after injurious stretch of fetal fibroblasts lacking EGFR. These data suggest that EGFR contributes to lung injury mediated by stretch. We speculate that EGFR may contribute to the arrest of lung development observed after mechanical ventilation by decreasing the population of lung fibroblasts.

Related Organizations
Keywords

Mice, Knockout, Apoptosis, Lung Injury, Fibroblasts, ErbB Receptors, Fetal Development, Mice, Animals, Stress, Mechanical, Phosphorylation, Lung, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!