
We consider the Dirichlet problem $ (*)$ $-\Delta u = \mu u + f $ in $\Omega$, $u=0$ on $\partial \Omega$, with $\Omega$ either a bounded smooth convex domain in $\mathbb R^2$, or a ball or an annulus in $\mathbb R^N$. Let $\lambda_2$ be the second eigenvalue, with $\varphi_2$ an associated eigenfunction. Although the two nodal domains of $\varphi_2$ do not satisfy the interior ball condition, we are able to prove under suitable assumptions that, if $\mu$ is sufficiently close to $\lambda_2$, then the solution $u$ of $(*)$ also has two nodal domains which appear as small deformations of the nodal domains of $\varphi_2$. For $N=2$, use is made in the proof of several results relative to the Payne conjecture.
35J25, Equations différentielles et aux dérivées partielles
35J25, Equations différentielles et aux dérivées partielles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
