<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract In Drosophila, the dosage compensation complex (DCC) mediates upregulation of transcription from the single male X chromosome. Despite coating the polytene male X, the DCC pattern looks discontinuous and probably reflects DCC dynamic associations with genes active at a given moment of development in a salivary gland. To test this hypothesis, we compared binding patterns of the DCC and of the elongating form of RNA polymerase II (PolIIo). We found that, unlike PolIIo, the DCC demonstrates a stable banded pattern throughout larval development and escapes binding to a subset of transcriptionally active areas, including developmental puffs. Moreover, these proteins are not completely colocalized at the electron microscopy level. These data combined imply that simple recognition of PolII machinery or of general features of active chromatin is either insufficient or not involved in DCC recruitment to its targets. We propose that DCC-mediated site-specific upregulation of transcription is not the fate of all active X-linked genes in males. Additionally, we found that DCC subunit MLE associates dynamically with developmental and heat-shock-induced puffs and, surprisingly, with those developing within DCC-devoid regions of the male X, thus resembling the PolIIo pattern. These data imply that, independently of other MSL proteins, the RNA-helicase MLE might participate in general transcriptional regulation or RNA processing.
Male, X Chromosome, Transcription, Genetic, Fluorescent Antibody Technique, Gene Expression Regulation, Developmental, Chromosomes, Animals, Genetically Modified, Dosage Compensation, Genetic, Larva, Animals, Drosophila Proteins, Drosophila, RNA Polymerase II, Transgenes, Transcription Factors
Male, X Chromosome, Transcription, Genetic, Fluorescent Antibody Technique, Gene Expression Regulation, Developmental, Chromosomes, Animals, Genetically Modified, Dosage Compensation, Genetic, Larva, Animals, Drosophila Proteins, Drosophila, RNA Polymerase II, Transgenes, Transcription Factors
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |