Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamics of benzene, cyclohexane and n-hexane in KL zeolite studied by 2H NMR

Authors: Takayuki Sato; Kimio Kunimori; Shigenobu Hayashi;

Dynamics of benzene, cyclohexane and n-hexane in KL zeolite studied by 2H NMR

Abstract

Molecular motions of benzene-d6, cyclohexane-d12 and n-hexane-d14 sorbed at loading levels of 1 molecule per channel lobe in KL zeolite have been studied by 2H NMR. The spectra were recorded in the temperature range from 124 to 373 K, and they were successfully simulated. At low temperatures, benzene molecules rotate fast around the C6 axis, and cyclohexane molecules rotate fast around the C3 axis of the chair form, where the directions of the rotation axis are fixed. With increase in temperature, benzene, cyclohexane, and n-hexane molecules start jumping among the six equivalent sites on K+ ions. Further increases in temperature results in the increase in the fraction of molecules located at the central space of the micropore which undergo isotropic motions and exchange with the molecules on the K+ ions. The mean residence time on the K+ ion is in the following order: benzene-d6>cyclohexane-d12>n-hexane-d14. The apparent activation energies derived from the mean residence times are 28.0±1.6 kJ mol-1 (220 K⩽T⩽373 K) for benzene-d6, 9.6±1.2 kJ mol-1 (160 K⩽T⩽260 K) and 44.3±3.6 kJ mol-1 (280 K⩽T⩽373 K) for cyclohexane-d12, and about 10 kJ mol-1 for n-hexane-d14. The large activation energy at the high temperatures in cyclohexane-d12 might be caused by the conformation inversion of the cyclohexane ring. The ratios of the numbers of molecules in the central space to those on the K+ ions are in the order of benzene-d6 cyclohexane-d12>n-hexane-d14.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?