Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Online Colored Bin Packing

Authors: B��hm, Martin; Sgall, Ji����; Vesel��, Pavel;
Abstract

In the Colored Bin Packing problem a sequence of items of sizes up to $1$ arrives to be packed into bins of unit capacity. Each item has one of $c\geq 2$ colors and an additional constraint is that we cannot pack two items of the same color next to each other in the same bin. The objective is to minimize the number of bins. In the important special case when all items have size zero, we characterize the optimal value to be equal to color discrepancy. As our main result, we give an (asymptotically) 1.5-competitive algorithm which is optimal. In fact, the algorithm always uses at most $\lceil1.5\cdot OPT\rceil$ bins and we show a matching lower bound of $\lceil1.5\cdot OPT\rceil$ for any value of $OPT\geq 2$. In particular, the absolute ratio of our algorithm is $5/3$ and this is optimal. For items of unrestricted sizes we give an asymptotically $3.5$-competitive algorithm. When the items have sizes at most $1/d$ for a real $d \geq 2$ the asymptotic competitive ratio is $1.5+d/(d-1)$. We also show that classical algorithms First Fit, Best Fit and Worst Fit are not constant competitive, which holds already for three colors and small items. In the case of two colors---the Black and White Bin Packing problem---we prove that all Any Fit algorithms have absolute competitive ratio $3$. When the items have sizes at most $1/d$ for a real $d \geq 2$ we show that the Worst Fit algorithm is absolutely $(1+d/(d-1))$-competitive.

Added lower bound of 2.5 for at least three colors, expanded some proofs

Keywords

FOS: Computer and information sciences, Data Structures and Algorithms (cs.DS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!