Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Cell Biology
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RETRACTED: Drosophila paramyosin is important for myoblast fusion and essential for myofibril formation

Authors: Hongjun Liu; Sanford I. Bernstein; Sean T. Sweeney; Cahir J. O'Kane; Michelle Mardahl-Dumesnil;

RETRACTED: Drosophila paramyosin is important for myoblast fusion and essential for myofibril formation

Abstract

Paramyosin is a major structural protein of thick filaments in invertebrate muscles. Coiled-coil dimers of paramyosin form a paracrystalline core of these filaments, and the motor protein myosin is arranged on the core surface. To investigate the function of paramyosin in myofibril assembly and muscle contraction, we functionally disrupted the Drosophila melanogaster paramyosin gene by mobilizing a P element located in its promoter region. Homozygous paramyosin mutants die at the late embryo stage. Mutants display defects in both myoblast fusion and in myofibril assembly in embryonic body wall muscles. Mutant embryos have an abnormal body wall muscle fiber pattern arising from defects in myoblast fusion. In addition, sarcomeric units do not assemble properly and muscle contractility is impaired. We confirmed that these defects are paramyosin-specific by rescuing the homozygous paramyosin mutant to adulthood with a paramyosin transgene. Antibody analysis of normal embryos demonstrated that paramyosin accumulates as a cytoplasmic protein in early embryo development before assembling into thick filaments. We conclude that paramyosin plays an unexpected role in myoblast fusion and is important for myofibril assembly and muscle contraction.

Keywords

Cytoplasm, Embryo, Nonmammalian, Homozygote, Tropomyosin, Immunohistochemistry, Article, Myoblasts, Microscopy, Electron, Drosophila melanogaster, Myofibrils, Mutation, Animals, Genes, Lethal, Muscle, Skeletal, Promoter Regions, Genetic, Muscle Contraction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Green
bronze