
pmid: 23886161
Along with rapid economic growth and enhanced agricultural productivity, particulate matter emissions in the northern cities of Thailand have been increasing for the past two decades. This trend is expected to continue in the coming decade. Emissions of particulate matter have brought about a series of public health concerns, particularly chronic respiratory diseases. It is well known that lung cancer incidence among northern Thai women is one of the highest in Asia (an annual age-adjusted incidence rate of 37.4 per 100,000). This fact has aroused serious concern among the public and the government and has drawn much attention and interest from the scientific community. To investigate the potential causes of this relatively high lung cancer incidence, this study employed Fourier transform infrared spectroscopy (FTIR) transmission spectroscopy to identify the chemical composition of the PM2.5 collected using Quartz Fibre Filters (QFFs) coupled with MiniVolTM portable air samplers (Airmetrics). PM2.5 samples collected in nine administrative provinces in northern Thailand before and after the "Haze Episode" in 2013 were categorised based on three-dimensional plots of a principal component analysis (PCA) with Varimax rotation. In addition, the incremental lifetime exposure to PM2.5 of both genders was calculated, and the first derivative of the FTIR spectrum of individual samples is here discussed.
Male, Air Pollutants, Inhalation Exposure, Thailand, Occupational Exposure, Spectroscopy, Fourier Transform Infrared, Humans, Female, Particulate Matter, Public Health, Organic Chemicals, Environmental Monitoring
Male, Air Pollutants, Inhalation Exposure, Thailand, Occupational Exposure, Spectroscopy, Fourier Transform Infrared, Humans, Female, Particulate Matter, Public Health, Organic Chemicals, Environmental Monitoring
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
