Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Characterization of a novel WHSC1-associated SET domain protein with H3K4 and H3K27 methyltransferase activity

Authors: Sung Mi, Kim; Hae Jin, Kee; Gwang Hyeon, Eom; Nak Won, Choe; Ji Young, Kim; Young Soo, Kim; Seong Ki, Kim; +3 Authors

Characterization of a novel WHSC1-associated SET domain protein with H3K4 and H3K27 methyltransferase activity

Abstract

Evolutionary conserved SET domains were originally identified in three Drosophila proteins: suppressor of variegation (Su (var) 3-9), enhancer of zeste (E(z)), and the trithorax. Some of the SET-domain containing proteins have been known to elicit methylation of histone lysine residues. Based on a search for SET-domain containing proteins using bioinformatic tools, we identified and subsequently named a novel SET domain as WHISTLE, that has histone methyltransferase (HMTase) activity. To characterize WHISTLE, we performed an HMTase assay, mass spectrometric analysis, lysine specificity, and transfection assays. Mass spectrometric and immunoblot analysis revealed that WHISTLE di-methylates H3K4 and di-, and tri-methylates H3K27 of histones. Overexpression of WHISTLE repressed transcription of the SV40 promoter. Our results suggest that WHISTLE is a novel SET domain containing a protein with specific H3K4 and H3K27 HMTase activity.

Related Organizations
Keywords

Sequence Homology, Amino Acid, Chromosomal Proteins, Non-Histone, Molecular Sequence Data, Bone Marrow Cells, Histone-Lysine N-Methyltransferase, Methyltransferases, Protein Structure, Tertiary, DNA-Binding Proteins, Enzyme Activation, Histones, Repressor Proteins, Humans, Histone Chaperones, Amino Acid Sequence, Carrier Proteins, Cells, Cultured, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!