Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Atheroscl...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Atherosclerosis and Thrombosis
Article . 2011 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Activation of Receptor for Advanced Glycation End Products Induces Osteogenic Differentiation of Vascular Smooth Muscle Cells

Authors: Toru Tanaka; Tatsuya Iso; Masahiko Kurabayashi; Masayoshi Takeuchi; Tsutomu Imaizumi; Toshihiro Suga; Takehisa Shimizu; +1 Authors

Activation of Receptor for Advanced Glycation End Products Induces Osteogenic Differentiation of Vascular Smooth Muscle Cells

Abstract

Vascular calcification is prevalent in patients with diabetes and chronic kidney disease. Receptor for advanced glycation end products (RAGE) and its multiple ligands have been implicated in the pathogenesis of accelerated atherosclerosis; however, little is known about the effects of RAGE activation on vascular calcification.Cultured rat and human aortic smooth muscle cells (HASMC) were transduced with adenovirus expressing RAGE. Expression of myocardin and the SMC-marker genes was significantly repressed in these cells. RAGE activation inhibited myocardin-induced expression of the SMC genes in mouse embryonic mesenchymal C3H10T1/2 cells. Interestingly, RAGE activation induced alkaline phosphatase (ALP) expression, calcium deposition, and Msx2 expression, a crucial transcription factor for osteogenic differentiation, in HASMC. RAGE-induced osteogenic differentiation was significantly inhibited by endogenous secretory RAGE. RAGE-induced ALP and Msx2 expression was completely abrogated by DAPT, an inhibitor of the Notch signaling pathway. PD98059 (MEK inhibitor) effectively blunted RAGE-induced Notch1 and Msx2 gene expression. Simultaneous stimulation with bone morphogenetic protein 2 (BMP2) and RAGE signaling synergistically induced expressions of Msx2 and ALP in HASMC. Immunohistochemistry revealed that the human calcifying atherosclerotic plaque expressed RAGE, Notch components and Msx2. The ALP activity induced in RAGE-overexpressing HASMCs by human serum was positively correlated with the serum creatinine level, but not with phosphate and hemoglobin A1c levels.These results indicate that activation of RAGE not only inhibits myocardin-dependent SMC gene expression, but also induces osteogenic differentiation of vascular SMC through Notch/Msx2 induction. These results provide a novel insight into the role of RAGE axis in vascular calcification.

Keywords

Glycated Hemoglobin, Mice, Inbred C3H, Receptors, Notch, Receptor for Advanced Glycation End Products, Bone Morphogenetic Protein 2, Alkaline Phosphatase, Atherosclerosis, Ligands, Immunohistochemistry, Muscle, Smooth, Vascular, Adenoviridae, Rats, Mice, Osteogenesis, Animals, Humans, Calcium, Receptors, Immunologic, Vascular Calcification, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 10%
Top 10%
Top 10%
gold