Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1995 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular Cloning, Expression, Chromosomal Assignment, and Tissue-specific Expression of a Murine α-(1,3)-Fucosyltransferase Locus Corresponding to the Human ELAM-1 Ligand Fucosyl Transferase

Authors: GERSTEN K. M.; NATSUKA S.; TRINCHERA, MARCO GIUSEPPE; PETRYNIAK B.; KELLY R. J.; HIRAIWA N.; JENKINS N. A.; +3 Authors

Molecular Cloning, Expression, Chromosomal Assignment, and Tissue-specific Expression of a Murine α-(1,3)-Fucosyltransferase Locus Corresponding to the Human ELAM-1 Ligand Fucosyl Transferase

Abstract

Terminal Fuc alpha 1-3GlcNAc moieties are displayed by mammalian cell surface glycoconjugates in a tissue-specific manner. These oligosaccharides participate in selectin-dependent leukocyte adhesion and have been implicated in adhesive events during murine embryogenesis. Other functions for these molecules remain to be defined, as do the tissue-specific expression patterns of the corresponding alpha-(1-3)-fucosyltransferase (alpha 1-3FT) genes. This report characterizes a murine alpha 1-3FT that shares 77% amino acid sequence identity with human ELAM ligand fucosyltransferase (ELFT, also termed Fuc-TIV). The corresponding gene maps to mouse chromosome 9 in a region of homology with the Fuc-TIV locus on human chromosome 11q. In vitro, the murine alpha 1-3FT can efficiently fucosylate the trisaccharide Gal alpha 1-3Gal beta 1-4GlcNAc (apparent Km of 0.71 mM) to form an unusual tetrasaccharide (Gal alpha 1-3Gal beta 1-4[Fuc alpha 1-3]GlcNAc) described in periimplantation mouse tissues. The enzyme can also form the Lewis x determinant from Gal beta 1-4GlcNAc (Km = 2.05 mM), and the sialyl Lewis x determinant from NeuNAc alpha 2-3Gal beta 1-4GlcNAc (Km = 1.78mM). However, it does not yield sialyl Lewis x determinants when expressed in a mammalian cell line that maintains sialyl Lewis x precursors. Transcripts from this gene accumulate to low levels in hematopoietic organs, but are unexpectedly abundant in epithelia that line the stomach, small intestine, colon, and epididymus. Epithelial cell-specific expression of this gene suggests function(s) in addition to, and distinct from, its proposed role in selectin ligand synthesis.

Country
Italy
Keywords

Male, Base Sequence, Molecular Sequence Data, Chromosome Mapping, Fucosyltransferases, Ligands, Mice, Inbred C57BL, Mice, Organ Specificity, Animals, Humans, Female, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, E-Selectin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 1%
gold