
pmid: 14643434
Replication-blocking lesions result in increased genomic instability by stalling replication forks. Eukaryotic cells appear to have evolved several surveillance and repair/bypass mechanisms to ensure that replication can be resumed at these stalled forks. In the yeast Saccharomyces cerevisiae, the helicases Srs2 and Sgs1 appear to play a role in controlling the processing and stabilization of stalled replication forks. These proteins appear to be tightly regulated throughout the cell cycle and play a direct role in DNA-damage checkpoints. This allows the cells to determine the best mechanism to reestablish replication at the stalled fork: by shuttling the lesion into the RAD6-dependent pathway that can lead to error-free or error-prone bypass; or by using homologous recombination. Under conditions where both the RAD6-dependent pathway and recombination are disabled, the cells can bypass the lesion using a novel damage avoidance mechanism that is controlled by Mgs1. Replication fork bypass processes appear to be highly conserved within eukaryotes, with homologs for SGS1 and MGS1 found in both Schizosaccharomyces pombe and mammalian cells.
DNA Replication, Saccharomyces cerevisiae Proteins, DNA Repair, DNA Helicases, Replication Origin, Saccharomyces cerevisiae, Genomic Instability, Gene Expression Regulation, Fungal, Crossing Over, Genetic, DNA, Fungal, DNA Damage, Signal Transduction
DNA Replication, Saccharomyces cerevisiae Proteins, DNA Repair, DNA Helicases, Replication Origin, Saccharomyces cerevisiae, Genomic Instability, Gene Expression Regulation, Fungal, Crossing Over, Genetic, DNA, Fungal, DNA Damage, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 106 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
