Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Wiener Medizinische ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Wiener Medizinische Wochenschrift
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Resistance to HER2-targeted therapy: mechanisms of trastuzumab resistance and possible strategies to overcome unresponsiveness to treatment

Authors: Michael, Hubalek; Christine, Brunner; Karin, Matthä; Christian, Marth;

Resistance to HER2-targeted therapy: mechanisms of trastuzumab resistance and possible strategies to overcome unresponsiveness to treatment

Abstract

Trastuzumab has shown significant efficacy in HER2-overexpressing breast cancers and is approved for patients whose tumors carry this abnormality, both in the metastatic and in the adjuvant settings. However, several issues about its optimal use remain unresolved. Many breast cancer patients with HER2 overexpression do not respond to initial therapy with trastuzumab (Herceptin(®)), and a vast majority of these develop resistance to this monoclonal antibody within one year. This review discusses the molecular mechanisms leading to the development of trastuzumab resistance, including circulating HER2 extracellular domain, loss of PTEN, activation of alternative pathways (e.g. IGFR), and receptor-antibody interaction block. Additionally, the possibility of exploring these aberrations as therapeutic targets that potentially overcome resistance to trastuzumab is highlighted.

Related Organizations
Keywords

Receptor, ErbB-2, PTEN Phosphohydrolase, Antibodies, Monoclonal, Antineoplastic Agents, Apoptosis, Breast Neoplasms, Gefitinib, Lapatinib, Trastuzumab, Antibodies, Monoclonal, Humanized, Prognosis, Gene Expression Regulation, Neoplastic, Drug Delivery Systems, Drug Resistance, Neoplasm, Quinazolines, Humans, Female, Phosphatidylinositol 3-Kinase, Cell Division, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!