
pmid: 18238011
The problem of the necessary complexity of neural networks is of interest in applications. In this paper, learning capability and storage capacity of feedforward neural networks are considered. We markedly improve the recent results by introducing neural-network modularity logically. This paper rigorously proves in a constructive method that two-hidden-layer feedforward networks (TLFNs) with 2/spl radic/(m+2)N (/spl Lt/N) hidden neurons can learn any N distinct samples (x/sub i/, t/sub i/) with any arbitrarily small error, where m is the required number of output neurons. It implies that the required number of hidden neurons needed in feedforward networks can be decreased significantly, comparing with previous results. Conversely, a TLFN with Q hidden neurons can store at least Q/sup 2//4(m+2) any distinct data (x/sub i/, t/sub i/) with any desired precision.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 616 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
