
A label-free electrochemical strategy is proposed combining equivalent substitution effect with AuNPs-assisted signal amplification. According to the differences of S1 protein in various infectious bronchitis virus (IBV) strains, a target DNA sequence that can specifically recognize H120 RNA forming a DNA-RNA hybridized double-strand structure has been designed. Then, the residual single-stranded target DNA is hydrolyzed by S1 nuclease. Therefore, the content of target DNA becomes equal to the content of virus RNA. After equivalent coronavirus, the target DNA is separated from DNA-RNA hybridized double strand by heating, which can partly hybridize with probe 2 modified on the electrode surface and probe 1 on AuNPs' surface. Thus, AuNPs are pulled to the surface of the electrode and the abundant DNA on AuNPs' surface could adsorb a large amount of hexaammineruthenium (III) chloride (RuHex) molecules, which produce a remarkably amplified electrochemical response. The voltammetric signal of RuHex with a peak near - 0.28 V vs. Ag/AgCl is used as the signal output. The proposed method shows a detection range of 1.56e-9 to 1.56e-6 μM with the detection limit of 2.96e-10 μM for IBV H120 strain selective quantification detection, exhibiting good accuracy, stability, and simplicity, which shows a great potential for IBV detection in vaccine research and avian infectious bronchitis diagnosis. Graphical abstract.
Original Paper, Infectious bronchitis virus, Metal Nanoparticles, Biosensing Techniques, Electrochemical Techniques, Analytical Chemistry, Coronavirus, Species Specificity, Limit of Detection, Spike Glycoprotein, Coronavirus, Animals, RNA, Viral, Capsid Proteins, Gold, Coronavirus Infections, DNA Probes, Chickens, In Situ Hybridization
Original Paper, Infectious bronchitis virus, Metal Nanoparticles, Biosensing Techniques, Electrochemical Techniques, Analytical Chemistry, Coronavirus, Species Specificity, Limit of Detection, Spike Glycoprotein, Coronavirus, Animals, RNA, Viral, Capsid Proteins, Gold, Coronavirus Infections, DNA Probes, Chickens, In Situ Hybridization
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
