Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Memory management for billions of small objects in a distributed in-memory storage

Authors: Florian Klein; Kevin Beineke; Michael Schottner;

Memory management for billions of small objects in a distributed in-memory storage

Abstract

Large-scale interactive applications and online analytic processing on graphs require fast data access to huge sets of small data objects. DXRAM addresses these challenges by keeping all data always in memory of potentially many nodes aggregated in a data center. In this paper we focus on the efficient memory management and mapping of global IDs to local memory addresses, which is not trivial as each node may store up to one billion of small data objects (16–64 byte) in its local memory. We present an efficient paging-like translation scheme for global IDs and a memory management optimized for many small data objects. The latter includes an efficient incremental defragmentation supporting changing allocation granularities for dynamic data. Our evaluations show that the proposed memory management approach has only a 4–5% overhead compared to state of the art memory allocators with around 20% and the paging-like mapping of globals IDs is faster and more efficient than hash-table based approaches. Furthermore, we compare memory overhead and read performance of DXRAM with RAMCloud.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!