Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Dataset . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Dataset . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

G-RUN ENSEMBLE

Authors: Ghiggi, Gionata; Humphrey, Vincent; Gudmundsson, Lukas; Seneviratne, Sonia I;
Abstract

G-RUN ENSEMBLE (pronounced GeRUN) consists in a multi-forcing global reanalysis of monthly runoff rates created by means of machine learning and a global collection of river discharge observations. G-RUN ENSEMBLE allows for an unprecedented view on global terrestrial water dynamics on time scales ranging from months to a full century. Quantification of the uncertainty stemming from the atmospheric forcing data makes G-RUN ENSEMBLE the ideal candidate for reliable and robust water resources assessments.------------------------------------------------------------------------------File description - G-RUN_ENSEMBLE_MMM.nc covers the time period from 1902 to 2019 and provide the median of the G-RUN ENSEMBLE members. If you want to rely on one single estimate this is likely the file you are interested in.- G-RUN_ENSEMBLE_MEMBERS.zip contains ensemble mean reconstructions for 21 different atmospheric forcing datasets. The time range depends on the considered forcing.- Each remaining file called G-RUN_ENSEMBLE_*.zip (where * denotes the acronym of the atmospheric forcing dataset used to force the model), contains 25 runoff reconstructions obtained by training models on different subsets of the available runoff observations. ------------------------------------------------------------------------------References- Ghiggi, G., Humphrey, V., Seneviratne, S. I., & Gudmundsson, L. (2021). G-RUN ENSEMBLE: A multi-forcing observation-based global runoff reanalysis. Water Resources Research, 57(5), e2020WR028787. https://doi.org/10.1029/2020WR028787- Ghiggi, G., Humphrey, V., Seneviratne, S. I., & Gudmundsson, L. (2019). GRUN: an observation-based global gridded runoff dataset from 1902 to 2014. Earth System Science Data, 11(4), 1655���1674. https://doi.org/10.5194/essd-11-1655-2019

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average