Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IUBMB Lifearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IUBMB Life
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IUBMB Life
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
IUBMB Life
Article . 2005
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rpb4 and Rpb7: A Sub‐complex Integral to Multi‐subunit RNA Polymerases Performs a Multitude of Functions

Authors: Sampath, Vinaya; Sadhale, Parag;

Rpb4 and Rpb7: A Sub‐complex Integral to Multi‐subunit RNA Polymerases Performs a Multitude of Functions

Abstract

AbstractRpb4 and Rpb7, are conserved subunits of RNA polymerase II that play important roles in stress responses such as growth at extreme temperatures, recovery from stationary phase, sporulation and pseudohyphal growth. Recent reports have shown that apart from stress response, these proteins also affect a multitude of processes including activated transcription, mRNA export, transcription coupled repair etc. We propose a model that integrates the multifarious roles of this sub‐complex. We suggest that these proteins function by modulating interactions of one or more ancillary factors with the polymerase leading to specific transcription of subsets of these genes. Preliminary experimental evidence in support of such a model is discussed. IUBMB Life, 57: 93‐102, 2005

Keywords

Microbiology & Cell Biology, Models, Molecular, Saccharomyces cerevisiae Proteins, Transcription, Genetic, Molecular Sequence Data, Models, Biological, Gene Expression Regulation, Fungal, Amino Acid Sequence, RNA Polymerase II, RNA, Messenger, Sequence Alignment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
bronze