Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1985 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Purification and properties of eukaryotic initiation factor 2 and its ancillary protein factor (Co-eIF-2A) from yeast Saccharomyces cerevisiae.

Authors: M F, Ahmad; N, Nasrin; A C, Banerjee; N K, Gupta;

Purification and properties of eukaryotic initiation factor 2 and its ancillary protein factor (Co-eIF-2A) from yeast Saccharomyces cerevisiae.

Abstract

Two peptide chain initiation factor activities, eIF-2y and Co-eIF-2A20y, were purified from the high speed supernatant fraction of the yeast Saccharomyces cerevisiae and their properties were studied. 1) In sodium dodecyl sulfate-polyacrylamide gels, purified eIF-2y showed two major polypeptide bands corresponding to molecular weights of 54,000 and 36,000. The Mr 54,000 band was significantly more intense than the Mr 36,000 band, indicating the possible presence of two polypeptides of equal molecular weight in this band. The molecular weight of eIF-2y, determined using a density gradient centrifugation method, was approximately 140,000. 2) In sodium dodecyl sulfate-polyacrylamide gel, purified Co-eIF-2A20y showed a single polypeptide band corresponding to a molecular weight of 20,000. A similar molecular weight for Co-eIF-2A20y was also found using a density gradient centrifugation method. 3) In partial reactions, eIF-2y bound Met-tRNAf in the presence of Mg2+. The reaction required GTP. Co-eIF-2A20y stimulated Met-tRNAf binding to eIF-2y (2-3-fold) and also rendered the complex stable to 3 X 10(-5) M aurintricarboxylic acid. 4) This Co-eIF-2A20y activity was heat-labile and N-ethylmaleimide-insensitive. 5) Antibodies were prepared by injecting rabbits with homogeneous Co-eIF-2A20y. Such anti-Co-eIF-2A20y inhibited (60%) protein synthesis in a yeast cell-free protein synthesizing system and completely blocked Co-eIF-2A20y stimulation of Met-tRNAf. 40 S initiation complex formation. Protein synthesis inhibition by anti-Co-eIF-2A20y was almost completely reversed by preincubation of the antibodies specifically with homogeneous Co-eIF-2A20y.

Keywords

Hot Temperature, RNA, Transfer, Met, Eukaryotic Initiation Factor-2, Proteins, Saccharomyces cerevisiae, RNA, Transfer, Amino Acyl, Molecular Weight, Ethylmaleimide, Peptide Initiation Factors, Guanine Nucleotide Exchange Factors, Electrophoresis, Polyacrylamide Gel

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
gold