
Abstract Caffeine is a natural plant product found in many drinks, including coffee, tea, soft and energy drinks. Due to caffeine’s presence in the environment, microorganisms have evolved two different mechanisms to live on caffeine. The genetic maps of the caffeine N-demethylation pathway and C-8 oxidation pathway have been discovered in Pseudomonas putida CBB5 and Pseudomonas sp. CBB1, respectively. These genes are the only characterized bacterial caffeine-degrading genes, and may be of great value in producing fine chemicals, biofuels, and animal feed from coffee and tea waste. Here, we present preliminary results for production of theobromine and 7-methylxanthine from caffeine and theobromine, respectively, by two strains of metabolically engineered E. coli. We also demonstrate complete decaffeination of tea extract by an immobilized mixed culture of Klebsiella and Rhodococcus cells. These processes provide a first level demonstration of biotechnological utilization of coffee and tea waste.
Chemistry, pseudomonas putida cbb5, coffee waste, pseudomonas sp. cbb1, QD1-999, n-demethylase, caffeine
Chemistry, pseudomonas putida cbb5, coffee waste, pseudomonas sp. cbb1, QD1-999, n-demethylase, caffeine
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
