
Numerical calculation for two integral transforms in 2.5-D transient electromagnetic forward is a difficult and key task, namely, the inverse Fourier transform and the inverse Laplace transform. Some effective algorithms for them were described. Based on the known algorithms in DC resistivity on wave-number distribution and selection, we proposed a principle on how to choose the least wave-number concerning the central-loop transient electromagnetic method. First, observe the behavior of transformation function curve with regard to wave-number in Fourier domain. In the light of its asymptote, ascertain the coverage scope of wave-number. Compared with analytic solution, the least wave-number in Fourier domain can be derived. Furthermore, the Laplace numerical inversion algorithm which needs only a few Laplace variables in pure real domain was also introduced here. The procedure was applied to forward modeling on transient electromagnetic field of a vertical magnetic dipole over uniform half-space to demonstrate them effectiveness and general applicability.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
