
AbstractOvarian cancer, one of the malignant gynaecological tumours with the highest mortality rate among female reproductive system, is prone to metastasis, recurrence and chemotherapy resistance, causing a poor prognosis. Exosomes can regulate the epithelial‐mesenchymal plasticity of tumour cells, remodel surrounding tumour microenvironment, and affect tumour cell proliferation, invasion and metastasis. However, the function and mechanism of exosomes in the intraperitoneal implantation of ovarian cancer remain unclear. In this study, exosomal annexin A2 (ANXA2) derived from ovarian cancer cells was co‐cultured with human peritoneal mesothelial (HMrSV5) cells; functional experiments were conducted to explore the effects of exosomal ANXA2 on the biological behaviour of HMrSV5 and the related mechanisms. This study showed that ANXA2 in ovarian cancer cells can be transferred to HMrSV5 cells through exosomes, exosomal ANXA2 can not only promote the migration, invasion and apoptosis of HMrSV5 cells, but also regulates morphological changes and fibrosis of HMrSV5 cells. Furthermore, ANXA2 promotes the mesothelial‐mesenchymal transition (MMT) and degradation of the extracellular matrix of HMrSV5 cells through PI3K/AKT/mTOR pathway, finally affects pre‐metastasis microenvironment of ovarian cancer, which provides a new theoretical basis for the mechanism of intraperitoneal implantation and metastasis of ovarian cancer.
Ovarian Neoplasms, Epithelial-Mesenchymal Transition, Original Articles, Carcinoma, Ovarian Epithelial, Exosomes, Epithelium, Gene Expression Regulation, Neoplastic, Phosphatidylinositol 3-Kinases, Cell Movement, Cell Line, Tumor, Tumor Microenvironment, Humans, Female, Peritoneum, Annexin A2, Cell Proliferation, Signal Transduction
Ovarian Neoplasms, Epithelial-Mesenchymal Transition, Original Articles, Carcinoma, Ovarian Epithelial, Exosomes, Epithelium, Gene Expression Regulation, Neoplastic, Phosphatidylinositol 3-Kinases, Cell Movement, Cell Line, Tumor, Tumor Microenvironment, Humans, Female, Peritoneum, Annexin A2, Cell Proliferation, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
