Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2004
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Crystal structures and magnetic order of La{0.5+delta}A{0.5-delta}Mn{0.5+epsilon}Ru{0.5-epsilon}O{3} (A= Ca, Sr, Ba): Possible orbital glass ferromagnetic state

Authors: Granado, Eduardo; Huang, Qingzhen; Lynn, Jeff W.; Gopalakrishnan, J.; Ramesha, K.;

Crystal structures and magnetic order of La{0.5+delta}A{0.5-delta}Mn{0.5+epsilon}Ru{0.5-epsilon}O{3} (A= Ca, Sr, Ba): Possible orbital glass ferromagnetic state

Abstract

The crystallographic and magnetic properties of La{0.5+delta}A{0.5-delta}Mn{0.5+epsilon}Ru{0.5-epsilon}O{3} (A= Ca, Sr, Ba) were investigated by means of neutron powder diffraction. All studied samples show the orthorhombic perovskite crystal structure, space group Pnma, with regular (Mn,Ru)O{6} octahedra and no chemical ordering of the Mn3+ and Ru4+ ions. Ferromagnetic spin structures were observed below Tc ~ 200-250 K, with an average ordered moment of ~ 1.8-2.0 Bohr magnetons per (Mn,Ru). The observation of long-range ferromagnetism and the absence of orbital ordering are rationalized in terms a strong Mn-Ru hybridization, which may freeze the orbital degree of freedom and broaden the eg valence band, leading to an orbital-glass state with carrier-mediated ferromagnetism.

Keywords

Condensed Matter - Strongly Correlated Electrons, Condensed Matter - Materials Science, Strongly Correlated Electrons (cond-mat.str-el), Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green