<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The conversion of naive T cells into Treg can be achieved in vivo by delivery of antigen under subimmunogenic conditions. Here we have examined several drugs for their ability to enhance the conversion process in vivo and have found that the rapamycin analog everolimus potently enhances Treg conversion by interfering with T-cell costimulation, reducing cell division and thereby activation of DNA methyltransferase 1 as well as by reducing T-cell activation through the ATP-gated P2×7 receptor controlling Ca2 + influx. The resulting Tregs exhibit increased stability of Foxp3 expression even when generated in TGFβ-containing media in vitro. Thus the mammalian target of rapamycin (mTOR) inhibitor everolimus in addition to inhibiting immune responses enhances Treg conversion by several distinct pathways. The converted Tregs can be further expanded by injection of IL-2/IL-2ab complexes. These complexes also increase the number of CD25 + Foxp3 − cells that, however, do not represent cytokine secreting effector cells but anergic cells, some of which can secrete IL-10 and can themselves be considered regulatory T cells as well. The combined use of everolimus and IL-2/IL-2ab complexes in vivo makes it feasible to achieve highly effective antigen-driven conversion of naive T cells into Treg and their expansion in vivo and thereby the described protocols constitute important tools to achieve immunological tolerance by Treg vaccination.
Sirolimus, Receptors, Purinergic P2, Vaccination, Interleukin-2 Receptor alpha Subunit, Forkhead Transcription Factors, Lymphocyte Activation, T-Lymphocytes, Regulatory, Interleukin-10, Mice, Inbred C57BL, Mice, Animals, Interleukin-2, Female, Everolimus, Receptors, Purinergic P2X7, Antigens, Immunosuppressive Agents, Cell Proliferation
Sirolimus, Receptors, Purinergic P2, Vaccination, Interleukin-2 Receptor alpha Subunit, Forkhead Transcription Factors, Lymphocyte Activation, T-Lymphocytes, Regulatory, Interleukin-10, Mice, Inbred C57BL, Mice, Animals, Interleukin-2, Female, Everolimus, Receptors, Purinergic P2X7, Antigens, Immunosuppressive Agents, Cell Proliferation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 80 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |