
doi: 10.1109/78.902116
A concept of multipaired unitary transforms is introduced. These kinds of transforms reveal the mathematical structure of Fourier transforms and can be considered intermediate unitary transforms when transferring processed data from the original real space of signals to the complex or frequency space of their images. Considering paired transforms, we analyze simultaneously the splitting of the multidimensional Fourier transform as well as the presentation of the processed multidimensional signal in the form of the short one-dimensional (1-D) "signals", that determine such splitting. The main properties of the orthogonal system of paired functions are described, and the matrix decompositions of the Fourier and Hadamard transforms via the paired transforms are given. The multiplicative complexity of the two-dimensional (2-D) 2/sup r//spl times/2/sup r/-point discrete Fourier transform by the paired transforms is 4/sup r//2(r-7/3)+8/3-12 (r>3), which shows the maximum splitting of the 5-D Fourier transform into the number of the short 1-D Fourier transforms. The 2-D paired transforms are not separable and represent themselves as frequency-time type wavelets for which two parameters are united: frequency and time. The decomposition of the signal is performed in a way that is different from the traditional Haar system of functions.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
