Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aperta - TÜBİTAK Açı...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aperta - TÜBİTAK Açık Arşivi
Other literature type . 2017
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/apusnc...
Article . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design of spoof surface plasmon polariton based terahertz delay lines

Authors: Unutmaz, Muhammed Abdullah; Unlu, Mehmet;

Design of spoof surface plasmon polariton based terahertz delay lines

Abstract

We present the analysis and design of fixed physical length, spoof Surface Plasmon Polariton based waveguides with adjustable delay at terahertz frequencies. The adjustable delay is obtained using Corrugated Planar Goubau Lines (CPGL) by changing its corrugation depth without changing the total physical length of the waveguide. Our simulation results show that electrical lengths of 237.9°, 220.6°, and 310.6° can be achieved by physical lengths of 250 μm and 200 μm at 0.25, 0.275, and 0.3 THz, respectively, for demonstration purposes. These simulations results are also consistent with our analytical calculations using the physical parameter and material properties. When we combine pairs of same length delay lines as if they are two branches of a terahertz phase shifter, we achieved an error rate of relative phase shift estimation better than 5.8%. To the best of our knowledge, this is the first-time demonstration of adjustable spoof Surface Plasmon Polariton based CPGL delay lines. The idea can be used for obtaining tunable delay lines with fixed lengths and phase shifters for the terahertz band circuitry.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
  • 1
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
1
Average
Average
Average
1
Green