
pmid: 31535995
Given a video, Video Question Answering (VideoQA) aims at answering arbitrary free-form questions about the video content in natural language. A successful VideoQA framework usually has the following two key components: 1) a discriminative video encoder that learns the effective video representation to maintain as much information as possible about the video and 2) a question-guided decoder that learns to select the most related features to perform spatiotemporal reasoning, as well as outputs the correct answer. We propose compositional attention networks (CAN) with two-stream fusion for VideoQA tasks. For the encoder, we sample video snippets using a two-stream mechanism (i.e., a uniform sampling stream and an action pooling stream) and extract a sequence of visual features for each stream to represent the video semantics with implementation. For the decoder, we propose a compositional attention module to integrate the two-stream features with the attention mechanism. The compositional attention module is the core of CAN and can be seen as a modular combination of a unified attention block. With different fusion strategies, we devise five compositional attention module variants. We evaluate our approach on one long-term VideoQA dataset, ActivityNet-QA, and two short-term VideoQA datasets, MSRVTT-QA and MSVD-QA. Our CAN model achieves new state-of-the-art results on all the datasets.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
