Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Thrombosi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thrombosis and Haemostasis
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Inserm
Article . 2011
Data sources: HAL-Inserm
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Rennes 1
Article . 2011
Data sources: HAL-Rennes 1
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A role for Rab10 in von Willebrand factor release discovered by an AP‐1 interactor screen in C. elegans

Authors: Grégoire Michaux; Grégoire Michaux; Grégoire Michaux; E. Gallaud; S. Nurrish; Daniel F. Cutler; Clare E. F. Dyer; +1 Authors

A role for Rab10 in von Willebrand factor release discovered by an AP‐1 interactor screen in C. elegans

Abstract

Endothelial von Willebrand factor (VWF) mediates platelet adhesion and acts as a protective chaperone to clotting factor VIII. Rapid release of highly multimerized VWF is particularly effective in promoting hemostasis. To produce this protein, an elaborate biogenesis is required, culminating at the trans-Golgi network (TGN) in storage within secretory granules called Weibel-Palade bodies (WPB). Failure to correctly form these organelles can lead to uncontrolled secretion of low-molecular-weight multimers of VWF. The TGN-associated adaptor AP-1 and its interactors clathrin, aftiphilin and γ-synergin are essential to initial WPB formation at the Golgi apparatus, and thus to VWF storage and secretion.To identify new proteins implicated in VWF storage and/or secretion.A genomewide RNA interference (RNAi) screen was performed in the Nematode C. elegans to identify new AP-1 genetic interactors.The small GTPase Rab10 was found to genetically interact with a partial loss of function of AP-1 in C. elegans. We investigated Rab10 in human primary umbilical vein endothelial cells (HUVECs). We report that Rab10 is enriched at the Golgi apparatus, where WPB are formed, and that in cells where Rab10 expression has been suppressed by siRNA, VWF secretion is altered: the amount of rapidly released VWF was significantly reduced. We also found that Rab8A has a similar function.Rab10 and Rab8A are new cytoplasmic factors implicated in WPB biogenesis that play a role in generating granules that can rapidly respond to secretagogue.

Keywords

[SDV.MHEP.HEM] Life Sciences [q-bio]/Human health and pathology/Hematology, Polymerase Chain Reaction, Cell Line, Transcription Factor AP-1, rab GTP-Binding Proteins, von Willebrand Factor, Animals, Humans, RNA Interference, Endothelium, Vascular, Caenorhabditis elegans, [SDV.BC] Life Sciences [q-bio]/Cellular Biology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!