Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PKC activates BKCachannels in rat pulmonary arterial smooth muscle via cGMP-dependent protein kinase

Authors: Scott A, Barman; Shu, Zhu; Guichan, Han; Richard E, White;

PKC activates BKCachannels in rat pulmonary arterial smooth muscle via cGMP-dependent protein kinase

Abstract

Normally, signaling mechanisms that activate large-conductance, calcium- and voltage-activated potassium (BKCa) channels in pulmonary vascular smooth muscle cause pulmonary vasodilatation. BKCa-channel modulation is important in the regulation of pulmonary arterial pressure, and inhibition (decrease in the opening probability) of the BKCachannel has been implicated in the development of pulmonary vasoconstriction. Protein kinase C (PKC) causes pulmonary vasoconstriction, but little is known about the effect of PKC on BKCa-channel activity in pulmonary vascular smooth muscle. Accordingly, studies were done to determine the effect of PKC on BKCa-channel activity using patch-clamp studies in pulmonary arterial smooth muscle cells (PASMCs) of the Sprague-Dawley rat. The PKC activators phorbol myristate acetate (PMA) and thymeleatoxin opened BKCachannels in single Sprague-Dawley rat PASMC. The activator response to both PMA and thymeleatoxin on BKCa-channel activity was blocked by Gö-6983, which selectively blocks PKC-α, -δ, -γ, and -ζ, and by rottlerin, which selectively inhibits PKC-δ. In addition, the specific cyclic GMP-dependent protein kinase antagonist KT-5823 blocked the responses to PMA and thymelatoxin, whereas the specific cyclic AMP-dependent protein kinase blocker KT-5720 had no effect. In isolated pulmonary arterial vessels, both PMA and forskolin caused vasodilatation, which was inhibited by KT-5823, Gö-6983, or the BKCa-channel blocker tetraethylammonium. The results of this study indicate that activation of specific PKC isozymes increases BKCa-channel activity in Sprague-Dawley rat PASMC via cyclic GMP-dependent protein kinase, which suggests a unique signaling mechanism for vasodilatation.

Keywords

Male, Indoles, Patch-Clamp Techniques, Carbazoles, Protein kinase G, Pulmonary arterial smooth muscle, Pulmonary Artery, Muscle, Smooth, Vascular, Membrane Potentials, Rats, Sprague-Dawley, Potassium Channels, Calcium-Activated, Alkaloids, Phorbol Esters, Cyclic AMP, Cyclic GMP-Dependent Protein Kinases, Animals, Large-Conductance Calcium-Activated Potassium Channels, Enzyme Inhibitors, Large-Conductance Calcium-Activated Potassium Channel alpha Subunits, Cyclic GMP, Protein Kinase C, Hypertrophy, Right Ventricular, Colforsin, Protein kinase C isozymes, Cyclic AMP-Dependent Protein Kinases, Rats, Isoenzymes, Vasoconstriction, Carcinogens, Tetradecanoylphorbol Acetate, Calcium, Cyclic GMP-dependent protein kinase, High-conductance calcium-and voltage-activated potassium channel, Platelet Aggregation Inhibitors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    141
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
141
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!