
Due to recent explosion of data volume and velocity, a new array of lightweight key-value stores have emerged to serve as alternatives to traditional databases. The majority of these storage engines, however, sacrifice their read performance in order to cope with write throughput by avoiding random disk access when writing a record in favor of fast sequential accesses. But, the boundary between sequential vs. random access is becoming blurred with the advent of solid-state drives (SSDs). In this work, we propose our new key-value store, LogStore, optimized for hybrid storage architectures. Additionally, introduce a novel cost-based data staging model based on log-structured storage, in which recent changes are first stored on SSDs, and pushed to HDD as it ages, while minimizing the read/write amplification for merging data from SSDs and HDDs. Furthermore, we take a holistic approach in improving both the read and write performance by dynamically optimizing the data layout, such as deferring and reversing the compaction process, and developing an access strategy to leverage the strengths of each available medium in our storage hierarchy. Lastly, in our extensive evaluation, we demonstrate that LogStore achieves up to 6x improvement in throughput/latency over LevelDB, a state-of-the-art key-value store
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
