<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 19596317
Wnt/beta-catenin signaling is highly active in the dorsal retinal pigment epithelium (RPE) during eye development. To study the role of Wnt/beta-catenin signaling in the RPE development we used a conditional Cre/loxP system in mice to inactivate or ectopically activate Wnt/beta-catenin signaling in the RPE. Inactivation of Wnt/beta-catenin signaling results in transdifferentiation of RPE to neural retina (NR) as documented by downregulation of RPE-specific markers Mitf and Otx2 and ectopic expression of NR-specific markers Chx10 and Rx, respectively. In contrast, ectopic activation of Wnt/beta-catenin signaling results in the disruption of the RPE patterning, indicating that precise spatial and temporal regulation of Wnt/beta-catenin signaling is required for normal RPE development. Using chromatin immunoprecipitation (ChIP) and reporter gene assays we provide evidence that Otx2 and RPE-specific isoform of Mitf, Mitf-H, are direct transcriptional targets of Wnt/beta-catenin signaling. Combined, our data suggest that Wnt/beta-catenin signaling plays an essential role in development of RPE by maintaining or inducing expression of Mitf and Otx2.
Mitf, Chromatin Immunoprecipitation, Integrases, Gene Expression, Cell Differentiation, Cell Biology, Retinal Pigment Epithelium, Embryo, Mammalian, Transfection, Immunohistochemistry, Neural retina, Wnt Proteins, Mice, Animals, Retinal pigment epithelium, Molecular Biology, beta Catenin, Wnt/β-catenin signaling, Otx2, Developmental Biology, Signal Transduction
Mitf, Chromatin Immunoprecipitation, Integrases, Gene Expression, Cell Differentiation, Cell Biology, Retinal Pigment Epithelium, Embryo, Mammalian, Transfection, Immunohistochemistry, Neural retina, Wnt Proteins, Mice, Animals, Retinal pigment epithelium, Molecular Biology, beta Catenin, Wnt/β-catenin signaling, Otx2, Developmental Biology, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 136 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |