Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biomechan...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biomechanical Engineering
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reduced Amount or Integrity of Arterial Elastic Fibers Alters Allometric Scaling Relationships for Aortic Diameter and Heart Weight, But Not Cardiac Function in Maturing Mice

Authors: Jessica E, Wagenseil;

Reduced Amount or Integrity of Arterial Elastic Fibers Alters Allometric Scaling Relationships for Aortic Diameter and Heart Weight, But Not Cardiac Function in Maturing Mice

Abstract

Allometric scaling laws relate physiologic parameters to body weight. Genetically modified mice allow investigation of allometric scaling laws when fundamental cardiovascular components are altered. Elastin haploinsufficient (Eln+/−) mice have reduced elastin amounts, and fibulin-5 knockout (Fbln5−/−) mice have compromised elastic fiber integrity in the large arteries which may alter cardiovascular scaling laws. Previously published echocardiography data used to investigate aortic and left ventricular function in Eln+/− and Fbln5−/− mice throughout postnatal development and early adulthood were reanalyzed to determine cardiovascular scaling laws. Aortic diameter, heart weight, stroke volume, and cardiac output have scaling exponents within 1–32% of the predicted theoretical range, indicating that the scaling laws apply to maturing mice. For aortic diameter, Eln+/− and Eln+/+ mice have similar scaling exponents, but different scaling constants, suggesting a shift in starting diameter, but no changes in aortic growth with body weight. In contrast, the scaling exponent for aortic diameter in Fbln5−/− mice is lower than Fbln5+/+ mice, but the scaling constant is similar, suggesting that aortic growth with body weight is compromised in Fbln5−/− mice. For both Eln+/− and Fbln5−/− groups, the scaling constant for heart weight is increased compared to the respective control group, suggesting an increase in starting heart weight, but no change in the increase with body weight during maturation. The scaling exponents and constants for stroke volume and cardiac output are not significantly affected by reduced elastin amounts or compromised elastic fiber integrity in the large arteries, highlighting a robust cardiac adaptation despite arterial defects.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
bronze