Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article . 2014
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2014 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Human Myosin-18B - A Versatile Actin Binding Protein

Authors: Taft, Manuel H.; Radke, Michael B.; Stanczak, Michal; Thiel, Claudia; Manstein, Dietmar J.;

Human Myosin-18B - A Versatile Actin Binding Protein

Abstract

Class-18 myosins challenge our established view about myosins acting as molecular motors. No member of this class appears to have a significant ATPase activity, which is a prerequisite for motor activity. Humans express two myosin-18 isoforms, myosin-18A and myosin-18B. Whereas recent studies on myosin-18A shed some light on its cellular and biochemical mode of action, the molecular function of myosin-18B remains poorly understood. Class-18 myosins contain protein interaction domains outside their generic motor domain. In the case of myosin-18B this includes a large, N-terminal extension that shows no similarity to any known protein domain. Here, we show that the human myosin-18B motor domain binds to F-actin with an affinity of 4 µM. The isolated motor domain binds ATP but has no intrinsic ATPase activity. The large N-terminal extension is shown to directly bind to F-actin with an affinity of 7 µM. This interaction is nucleotide-independent but shows strong ionic strength dependence, which is indicative for a charge-mediated actin binding mechanism. We further analyzed the molecular function of the N-terminal extension by means of actin polymerization assays and found that the myosin-18B N-terminus inhibits F-actin assembly in vitro. Myosin-18B has previously been shown to be located in the cytoplasm of undifferentiated myoblasts. At later stages of differentiation it accumulates in myonuclei. Furthermore, it has been shown that cardiomyocytes display a partial sarcomeric pattern of myosin-18B alternating that of α-actinin-2. Based on our data, we propose a role for myosin-18B in the regulation of muscle sarcomere architecture during differentiation and the regulation of the nuclear actin pool.

Related Organizations
Keywords

Biophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid