<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract The identification of genomic regions that have been exposed to positive selection is a major challenge in population genetics. Since selective sweeps are expected to occur during environmental changes or when populations are colonizing a new habitat, statistical tests constructed on the assumption of constant population size are biased by the co-occurrence of population size changes and selection. To delimit this problem and gain better insights into demographic factors, theoretical results regarding the second-order moments of segregating sites, such as the variance of segregating sites, have been derived. Driven by emerging genomewide surveys, which allow the estimation of demographic parameters, a generalized version of Tajima's D has been derived that takes into account a previously estimated demographic scenario to test single loci for traces of selection against the null hypothesis of neutral evolution under variable population size.
Population Density, Models, Statistical, Models, Genetic, Arabidopsis, Genetic Variation, Environment, Models, Theoretical, Diploidy, Drosophila melanogaster, Genetics, Population, Mutation, Animals, Selection, Genetic, Algorithms
Population Density, Models, Statistical, Models, Genetic, Arabidopsis, Genetic Variation, Environment, Models, Theoretical, Diploidy, Drosophila melanogaster, Genetics, Population, Mutation, Animals, Selection, Genetic, Algorithms
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |