
arXiv: 2211.07796
handle: 20.500.11850/559981
This paper presents an $O(\log\log \bar{d})$ round massively parallel algorithm for $1+ε$ approximation of maximum weighted $b$-matchings, using near-linear memory per machine. Here $\bar{d}$ denotes the average degree in the graph and $ε$ is an arbitrarily small positive constant. Recall that $b$-matching is the natural and well-studied generalization of the matching problem where different vertices are allowed to have multiple (and differing number of) incident edges in the matching. Concretely, each vertex $v$ is given a positive integer budget $b_v$ and it can have up to $b_v$ incident edges in the matching. Previously, there were known algorithms with round complexity $O(\log\log n)$, or $O(\log\log Δ)$ where $Δ$ denotes maximum degree, for $1+ε$ approximation of weighted matching and for maximal matching [Czumaj et al., STOC'18, Ghaffari et al. PODC'18; Assadi et al. SODA'19; Behnezhad et al. FOCS'19; Gamlath et al. PODC'19], but these algorithms do not extend to the more general $b$-matching problem.
This paper appeared in Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) 2022
Matchings; approximate b matchings; massively parallel computation; MPC, FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC)
Matchings; approximate b matchings; massively parallel computation; MPC, FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
