Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
Research Collection
Conference object . 2022
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Massively Parallel Algorithms for b-Matching

Authors: Ghaffari, Mohsen; Grunau, Christoph; Mitrović, Slobodan;

Massively Parallel Algorithms for b-Matching

Abstract

This paper presents an $O(\log\log \bar{d})$ round massively parallel algorithm for $1+ε$ approximation of maximum weighted $b$-matchings, using near-linear memory per machine. Here $\bar{d}$ denotes the average degree in the graph and $ε$ is an arbitrarily small positive constant. Recall that $b$-matching is the natural and well-studied generalization of the matching problem where different vertices are allowed to have multiple (and differing number of) incident edges in the matching. Concretely, each vertex $v$ is given a positive integer budget $b_v$ and it can have up to $b_v$ incident edges in the matching. Previously, there were known algorithms with round complexity $O(\log\log n)$, or $O(\log\log Δ)$ where $Δ$ denotes maximum degree, for $1+ε$ approximation of weighted matching and for maximal matching [Czumaj et al., STOC'18, Ghaffari et al. PODC'18; Assadi et al. SODA'19; Behnezhad et al. FOCS'19; Gamlath et al. PODC'19], but these algorithms do not extend to the more general $b$-matching problem.

This paper appeared in Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) 2022

Related Organizations
Keywords

Matchings; approximate b matchings; massively parallel computation; MPC, FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green